USGS Methods: Water, Sediment and Colloids

Michelle Hladik
USGS California Water Science Center
Sacramento, CA

Overview of Methods

- Water
 - Separation of fractions
 - Dissolved
 - Suspended sediments
 - Sorption to containers
- Sediments
 - Bed and suspended sediments
- Colloids
 - SPME

Pyrethroids Included

- Allethrin
- Bifenthrin
- Cyfluthrin
- Cyhalothrin
- Cypermethrin
- Deltamethrin
- Deitamethrin
 Esfenvalerate
- Fenpropathrin
- Fluvalinate
- Permethrin
- Resmethrin
- Sumithrin (Phenothrin)
- Tetramethrin

>@JK[1]S

Sample large volume of water (100 1000 liters) Continuous-flow centrifuge Suspended Sediments (> 0.4 microns) Dissolved + Colloids (< 0.4 microns)

Water Method

- 1-L sample
- Filter (0.7 µm glass fiber)
- Solid Phase Extraction (HLB cartridge)
- Bottle rinse (sorbed pyrethroids)
- Extract filter paper (suspended sediments)
- GC/MS and GC/MS/MS (ion-trap)
- Recovery 91-98%
- MDLs 2-5 ng/L

Pyrethroid Sorption

- Pyrethroids in water sorb to sampling containers (glass or plastic)
 - Up to 50%
 - Analytical and toxicological importance
- Composition of sample influences extent of sorption
 - DOC
 - Suspended sediments
 - Relative surface area of container

Pyrethroid Sorption to Containers

- Not all pyrethroids sorb to the same degree
- Allethrin and tetramethrin sorb less →lack similar functional group
- Sorption seems to be "loose association"

Sorption- Additional Work

- Sorption addressed for analytical purposes not for toxicity or sampling
 - Continue exploring ways to mitigate or address pyrethroid sorption
 - Need concentration organisms are exposed to
- EPA funding to develop SOP for water sampling (FY07-08)
 - Cross-sections, composite samples
 - Autosamplers

Pyrethroid Water Method-SPE Storage

- SPE cartridge storage
 - Dried
 - Put in freezer
- Tested HLB and C8
 - Found not degradation on either cartridge after 1
- · Can store cartridges

Sediment Method

- 5-10 g samples
- MASE extraction at 120 °C, 50 % moisture with DCM:Methanol (9:1)
- Matrix clean-up: Carbon/Alumina stacked cartridges
 Eluted with DCM
- Sulfur clean-up: GPC or activated Cu
- GC/MS or MS/MS
- Recovery 80-93%
- MDLs 1-5 ng/g

Sediment Method Development • MASE temperature - Did not achieve complete extraction with 100 ℃ • MASE solvent - Started with 1:1 DCM:Acetone - More efficient (less matrix) with DCM;Methanol • Clean-up - Tried 10 g Florisil - No significant reduction of matrix and more time consuming - Also took other current use pesticides into consideration

Colloids- Measurement of Pyrethroids

- Several types of SPME
 - Headspace, liquid
- Negligible depletion SPME
 - Freely dissolved (or bioavailable) fractions
 - Only if equilibrium is not disturbed (EE of less than 5-10%)
 - Sample matrix should not disturb sorption kinetics

SPME- Parameters

- 20 mL of water
- Fiber
 - Tested 7 and 100 μm PDMS phase
- Total pyrethroids
 - Sorption onto fiber at 90 °C for 30 min with agitation
 - Desorption at 275 °C for 3 min
- Negligible depletion/ Bioavailable
 - Based on Liu et al., 2004, ET&C, 23, p 7-11.
 - Sorption at ambient temperature for 10 min with agitation
 Desorption at 275 °C for 3 min

